Towards a unified description of theories with a single scalar degree of freedom

Emilio Bellini

with: T. Baker, P.G. Ferreira, M. Lagos, J. Noller

Department of Physics - University of Oxford

Darkmod, Saclay. September 25th, 2017

Suppose we have

Generic actions describing gravity $(g_{\mu\nu})$ coupled to

- Scalar (ϕ)
- Vector (A^µ)
- Tensor $(h_{\mu\nu})$

Suppose we have

Generic actions describing gravity (g_{uv}) coupled to

- Scalar (ϕ)
- Vector (A^μ)
- Tensor $(h_{\mu\nu})$

Each of them have

- One scalar propagating d.o.f.
- Invariant under linear diffeomorphisms
- Maximum two derivatives
- Quadratic in perturbations (SVT decomposition)

Suppose we have

Generic actions describing gravity (g_{uv}) coupled to

- Scalar (ϕ)
- Vector (A^μ)
- Tensor $(h_{\mu\nu})$

Each of them have

- One scalar propagating d.o.f.
- Invariant under linear diffeomorphisms
- Maximum two derivatives
- Quadratic in perturbations (SVT decomposition)

Is it possible to write down a single action describing the linear phenomenology of all of them at once?

Suppose we have

Generic actions describing gravity (g_{uv}) coupled to

- Scalar (ϕ)
- Vector (A^μ)
- Tensor $(h_{\mu\nu})$

Each of them have

- One scalar propagating d.o.f.
- Invariant under linear diffeomorphisms
- Maximum two derivatives
- Quadratic in perturbations (SVT decomposition)

Is it possible to write down a single action describing the linear phenomenology of all of them at once?

I don't think so

Scalar-Tensor Theories

EFT of Dark Energy gives us the action! If up to second derivatives we have linearized Horndeski!

[Cheung, et al. (2008)] [Gubitosi, et al. (2012)] [Bloomfield, et al. (2012)] [EB, Sawicki (2013)]

Scalar-Tensor Theories

EFT of Dark Energy gives us the action! If up to second derivatives we have linearized Horndeski!

Expansion History: H(t) One constant: Ω_{m0}

[Cheung, et al. (2008)] [Gubitosi, et al. (2012)] [Bloomfield, et al. (2012)] [EB, Sawicki (2013)]

Scalar-Tensor Theories

EFT of Dark Energy gives us the action! If up to second derivatives we have linearized Horndeski!

Expansion History: $H\left(t\right)$ One constant: Ω_{m0}

[Cheung, et al. (2008)] [Gubitosi, et al. (2012)] [Bloomfield, et al. (2012)] [EB, Sawicki (2013)]

Kineticity: α_K

- standard perfect-fluid structures
- not present in archetypal "modified gravity" models

Braiding: α_B

- mixes the kinetic terms of the scalar and metric
- responsible for all the new scale-dependence

Planck mass run-rate: α_M

- $\frac{d}{dt}M_*^2$. M_*^2 effective Planck mass
- anisotropic stress

Tensor speed excess: α_T

- determines the speed of gravitational waves
- anisotropic stress

[Lagos, et al. (2016)]

 Choose the fields present in the theory and the gauge symmetries to be satisfied

[Lagos, et al. (2016)]

- Choose the fields present in the theory and the gauge symmetries to be satisfied
- Write down an action with all possible quadratic interactions between the fields, leading to a given maximum number of derivatives of the fields in the equations of motion

[Lagos, et al. (2016)]

- Choose the fields present in the theory and the gauge symmetries to be satisfied
- Write down an action with all possible quadratic interactions between the fields, leading to a given maximum number of derivatives of the fields in the equations of motion
- Find the Noether identities associated to the required gauge symmetries, and impose the resulting constraints on the quadratic action

[Lagos, et al. (2016)]

- Choose the fields present in the theory and the gauge symmetries to be satisfied
- Write down an action with all possible quadratic interactions between the fields, leading to a given maximum number of derivatives of the fields in the equations of motion
- Find the Noether identities associated to the required gauge symmetries, and impose the resulting constraints on the quadratic action

You choose

- Fields
- Gauge symmetries
- Number of derivatives

The rest is done by your PC!

- Fields: $g_{\mu\nu}$, A^{μ} plus matter φ
- Gauge symmetries: linear diff invariance
- Number of derivatives: 2

- Fields: $g_{\mu\nu}$, A^{μ} plus matter φ
- Gauge symmetries: linear diff invariance
- Number of derivatives: 2

SVT Decomposition

$$ds^{2} = a^{2}(\tau) \left[-(1 - \delta g_{00}) d\tau^{2} + 2\delta g_{0i} d\tau dx^{i} + \delta g_{ij} dx^{i} dx^{j} \right]$$
$$\delta g_{00} = 2\psi$$
$$\delta g_{0i} = \partial_{i} B + S_{i}$$
$$\delta g_{ij} = 2\phi \delta_{ij} + \partial_{i} \partial_{j} E + \partial_{i} F_{j} + \partial_{j} F_{i} + h_{ij}$$

- Fields: $g_{\mu\nu}$, A^{μ} plus matter φ
- Gauge symmetries: linear diff invariance
- Number of derivatives: 2

SVT Decomposition

$$ds^{2} = a^{2}(\tau) \left[-(1 - \delta g_{00}) d\tau^{2} + 2\delta g_{0i} d\tau dx^{i} + \delta g_{ij} dx^{i} dx^{j} \right]$$
$$\delta g_{00} = 2\psi$$
$$\delta g_{0i} = \partial_{i} B + S_{i}$$
$$\delta g_{ij} = 2\phi \delta_{ij} + \partial_{i} \partial_{j} E + \partial_{i} F_{j} + \partial_{j} F_{i} + h_{ij}$$

$$A^{\mu} = (\bar{A} + \delta A_0, \delta A_i)$$
 with $\delta A_0 = \alpha_0$ and $\delta A_i = \partial_i \alpha + \alpha_i$

- Fields: $g_{\mu\nu}$, A^{μ} plus matter φ
- Gauge symmetries: linear diff invariance
- Number of derivatives: 2

SVT Decomposition

$$ds^{2} = a^{2}(\tau) \left[-(1 - \delta g_{00}) d\tau^{2} + 2\delta g_{0i} d\tau dx^{i} + \delta g_{ij} dx^{i} dx^{j} \right]$$
$$\delta g_{00} = 2\psi$$
$$\delta g_{0i} = \partial_{i} B + S_{i}$$
$$\delta g_{ij} = 2\phi \delta_{ij} + \partial_{i} \partial_{j} E + \partial_{i} F_{j} + \partial_{j} F_{i} + h_{ij}$$

$$\boxed{A^{\mu} = (\bar{A} + \delta A_0, \, \delta A_i)} \quad \text{with} \quad \delta A_0 = \alpha_0 \quad \text{and} \quad \delta A_i = \partial_i \alpha + \alpha_i$$

$$\varphi = \bar{\varphi} + \delta \varphi$$

Generic action

$$S = \int d^3x d au \, \mathcal{L}\left(g_{00}, \, g_{0i}, \, g_{ij}, \, A^0, \, A^i\right) + S_m$$

Generic action

$$S = \int d^3x d au \, \mathcal{L}\left(g_{00}, \, g_{0i}, \, g_{ij}, \, A^0, \, A^i\right) + S_m$$

Scalars with second derivatives

$$S = \int d^3x d au \, \mathcal{L}\left(g_{00},\, \ddot{g}_{00},\, \partial^j A^i g_{ij},\, \dot{A}^i \dot{A}_i,\, \ldots
ight) + S_m$$

Generic action

$$S=\int d^3x d au \,\mathcal{L}\left(g_{00},\,g_{0i},\,g_{ij},\,A^0,\,A^i
ight)+S_m$$

Scalars with second derivatives

$$S = \int d^3x d au \mathcal{L}\left(g_{00}, \, \ddot{g}_{00}, \, \partial^j A^i g_{ij}, \, \dot{A}^i \dot{A}_i, \, \ldots\right) + S_m$$

Quadratic Lagrangian

$$\mathcal{L}^{(2)} = \mathcal{L}_{g_{00}g_{00}} \delta g_{00}^2 \, + \, \mathcal{L}_{g_{00}\ddot{g}_{00}} \delta g_{00} \, \dot{\delta g}_{00} \, + \, \mathcal{L}_{\dot{A}^i \dot{A}_i} \dot{\delta A}^i \dot{\delta A}_i \, + \dots$$

Quadratic Lagrangian in SVT

$$\mathcal{L}^{(2)} = \mathcal{L}_{g_{00}g_{00}}\psi^2 + \mathcal{L}_{g_{00}\ddot{g}_{00}}\psi\ddot{\psi} + \mathcal{L}_{\dot{A}^i\dot{A}_i}(\partial_i\dot{\alpha}\partial^i\dot{\alpha} + \dot{\alpha}_i\dot{\alpha}^i) + \dots$$

$$\mathcal{L}^{(2)} = \mathcal{L}_{g_{00}g_{00}}\psi^2 \, + \, \mathcal{L}_{g_{00}g_{00}}\psi\ddot{\psi} \, + \, \mathcal{L}_{\dot{A}^i\dot{A}_i}(\partial_i\dot{\alpha}\partial^i\dot{\alpha} + \dot{\alpha}_i\dot{\alpha}^i) \, + \, \ldots \, + \, 10^2 \text{terms}$$

$$\mathcal{L}^{(2)} = \mathcal{L}_{g_{00}g_{00}} \psi^2 \, + \, \mathcal{L}_{g_{00}\ddot{g}_{00}} \psi \ddot{\psi} \, + \, \mathcal{L}_{\dot{A}^i\dot{A}_i} (\partial_i \dot{\alpha} \partial^i \dot{\alpha} + \dot{\alpha}_i \dot{\alpha}^i) \, + \, \ldots \, + \, 10^2 \text{terms}$$

Linear coordinate transformation

$$\begin{split} \hat{\delta g}_{\mu\nu} &= \delta g_{\mu\nu} + \partial_{\alpha} g_{\mu\nu} \xi^{\alpha} + g_{\mu\alpha} \partial_{\nu} \xi^{\alpha} + \partial_{\mu} g_{\alpha\nu} \xi^{\alpha} \\ \hat{\delta A}_{\mu} &= \delta A_{\mu} + \partial_{\alpha} A_{\mu} \xi^{\alpha} + A_{\alpha} \partial_{\mu} \xi^{\alpha} \\ \hat{\delta \varphi} &= \delta \varphi + \partial_{\alpha} \varphi \xi^{\alpha} \end{split}$$

$$\xi^{\alpha}=(\pi,\,\partial^{i}\varepsilon+\gamma^{i})$$

$$\mathcal{L}^{(2)} = \mathcal{L}_{g_{00}g_{00}}\psi^2 \,+\, \mathcal{L}_{g_{00}\ddot{g}_{00}}\psi\ddot{\psi} \,+\, \mathcal{L}_{\dot{A}^i\dot{A}_i}(\partial_i\dot{\alpha}\partial^i\dot{\alpha} + \dot{\alpha}_i\dot{\alpha}^i) \,+\, \ldots \,+\, 10^2 \text{terms}$$

Linear coordinate transformation

$$\begin{split} \hat{\delta g}_{\mu\nu} &= \delta g_{\mu\nu} + \partial_{\alpha} g_{\mu\nu} \xi^{\alpha} + g_{\mu\alpha} \partial_{\nu} \xi^{\alpha} + \partial_{\mu} g_{\alpha\nu} \xi^{\alpha} \\ \hat{\delta A}_{\mu} &= \delta A_{\mu} + \partial_{\alpha} A_{\mu} \xi^{\alpha} + A_{\alpha} \partial_{\mu} \xi^{\alpha} \\ \hat{\delta \varphi} &= \delta \varphi + \partial_{\alpha} \varphi \xi^{\alpha} \end{split}$$

$$\xi^{\alpha} = (\pi, \, \partial^i \varepsilon + \gamma^i)$$

Invariance

$$\mathcal{L}^{(2)} = \mathcal{L}^{(2)}$$

$$\mathcal{L}^{(2)} = \mathcal{L}_{g_{00}g_{00}}\psi^2 \,+\, \mathcal{L}_{g_{00}\ddot{g}_{00}}\psi\ddot{\psi} \,+\, \mathcal{L}_{\dot{A}^i\dot{A}_i}(\partial_i\dot{\alpha}\partial^i\dot{\alpha} + \dot{\alpha}_i\dot{\alpha}^i) \,+\, \ldots \,+\, 10^2 \text{terms}$$

Linear coordinate transformation

$$\hat{\delta g}_{\mu\nu} = \delta g_{\mu\nu} + \partial_{\alpha} g_{\mu\nu} \xi^{\alpha} + g_{\mu\alpha} \partial_{\nu} \xi^{\alpha} + \partial_{\mu} g_{\alpha\nu} \xi^{\alpha}$$

$$\hat{\delta A}_{\mu} = \delta A_{\mu} + \partial_{\alpha} A_{\mu} \xi^{\alpha} + A_{\alpha} \partial_{\mu} \xi^{\alpha}$$

$$\hat{\delta \varphi} = \delta \varphi + \partial_{\alpha} \varphi \xi^{\alpha}$$

$$\xi^{\alpha} = (\pi, \, \partial^{i} \varepsilon + \gamma^{i})$$

Invariance

$$\mathcal{L}^{(2)} = \mathcal{L}^{(2)}$$

$$\Rightarrow \frac{\delta \mathcal{L}^{(2)}}{\delta \pi} = \frac{\delta \mathcal{L}^{(2)}}{\delta \varepsilon} = \frac{\delta \mathcal{L}^{(2)}}{\delta \gamma^{i}} = 0$$

$$\mathcal{L}^{(2)} = \mathcal{L}_{g_{00}g_{00}}\psi^2 \, + \, \mathcal{L}_{g_{00}\ddot{g}_{00}}\psi\ddot{\psi} \, + \, \mathcal{L}_{\dot{A}^i\dot{A}_j}(\partial_i\dot{\alpha}\partial^i\dot{\alpha} + \dot{\alpha}_i\dot{\alpha}^i) \, + \ldots \, + \, 10^2 \text{terms}$$

Linear coordinate transformation

$$\begin{split} \hat{\delta g}_{\mu\nu} &= \delta g_{\mu\nu} + \partial_{\alpha} g_{\mu\nu} \xi^{\alpha} + g_{\mu\alpha} \partial_{\nu} \xi^{\alpha} + \partial_{\mu} g_{\alpha\nu} \xi^{\alpha} \\ \hat{\delta A}_{\mu} &= \delta A_{\mu} + \partial_{\alpha} A_{\mu} \xi^{\alpha} + A_{\alpha} \partial_{\mu} \xi^{\alpha} \\ \hat{\delta \varphi} &= \delta \varphi + \partial_{\alpha} \varphi \xi^{\alpha} \end{split}$$

$$\xi^{\alpha} = (\pi, \, \partial^{i} \varepsilon + \gamma^{i})$$

Invariance

$$\mathcal{L}^{(2)} = \mathcal{L}^{(2)}$$

$$\Rightarrow \frac{\delta \mathcal{L}^{(2)}}{\delta \pi} = \frac{\delta \mathcal{L}^{(2)}}{\delta \varepsilon} = \frac{\delta \mathcal{L}^{(2)}}{\delta \gamma^{i}} = 0 \Rightarrow \mathcal{L}_{g_{00}g_{00}} = 0 \\ \mathcal{L}_{A_{0}A_{0}} + \mathcal{L}_{A_{0}\dot{A}_{0}} = 0$$

Noether constraints

Minimal number of free functions of time

Results and (Unification?)

Name	Description	ST	VT
$M_*^2 (\alpha_M)$	Planck M ass (run-rate)	\checkmark	√
α_K	K ineticity	√	√
α_B	B raiding	\checkmark	0
α_T	Tensor speed excess	√	√
ας	Conformal coupling excess	0	√
α_D	Small scales D ynamics	0	√
α_V	Vector mass mixing	0	\checkmark
α_A	A uxiliary friction	0	√
ας	Vector S peed	0	√

Results and (Unification?)

Name	Description	ST	VT
$M_*^2 (\alpha_M)$	Planck M ass (run-rate)	√	\checkmark
α_K	K ineticity	√	√
α_B	B raiding	√	0
α_T	Tensor speed excess	√	√
ας	Conformal coupling excess	0	√
α_D	Small scales D ynamics	0	√
α_V	V ector mass mixing	0	√
α_A	Auxiliary friction	0	√
ας	Vector S peed	0	√

Fields

- Scalar-Tensor: 4xAuxiliary + 2xDynamical
- Vector-Tensor:
 - 5xAuxiliary + 2xDynamical
 - 4xAuxiliary + 2xDynamical + Non-local operators

Results and (Unification?)

Description	ST	VT
Planck M ass (run-rate)	√	√
K ineticity	√	√
B raiding	√	0
Tensor speed excess	√	√
Conformal coupling excess	0	√
Small scales D ynamics	0	√
V ector mass mixing	0	√
Auxiliary friction	0	√
Vector S peed	0	√
	Planck Mass (run-rate) Kineticity Braiding Tensor speed excess Conformal coupling excess Small scales Dynamics Vector mass mixing Auxiliary friction	Planck Mass (run-rate) Kineticity Braiding Tensor speed excess Conformal coupling excess Small scales Dynamics Vector mass mixing Auxiliary friction V

Fields

- Scalar-Tensor: 4xAuxiliary + 2xDynamical
- Vector-Tensor:
 - 5xAuxiliary + 2xDynamical
 - 4xAuxiliary + 2xDynamical + Non-local operators

Unification: OK only for practical purposes!

 Efficient (for computer-aided calculations) method to calculate EFT theories given: fields, gauge symmetries and number of derivatives

- Efficient (for computer-aided calculations) method to calculate EFT theories given: fields, gauge symmetries and number of derivatives
- Phenomenological description of Vector-Tensor,
 Einstein-Aether and Tensor-Tensor theories

- Efficient (for computer-aided calculations) method to calculate EFT theories given: fields, gauge symmetries and number of derivatives
- Phenomenological description of Vector-Tensor,
 Einstein-Aether and Tensor-Tensor theories
- It is possible to write a unified action, but just for practical purposes

- Efficient (for computer-aided calculations) method to calculate EFT theories given: fields, gauge symmetries and number of derivatives
- Phenomenological description of Vector-Tensor, Einstein-Aether and Tensor-Tensor theories
- It is possible to write a unified action, but just for practical purposes

Thank you!